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We consider those subsets of the self-affine Sierpinski carpets that are the union of an uncountable number of
sets each of which consists of the points with their location codes having prescribed group frequencies. It is
proved that their Hausdorff dimensions equal to the supremum of the Hausdorff dimensions of the sets in the
union. The main advantage is that we treat these subsets in a unified manner and the value of the Hausdorff
dimensions do not need to be guessed a priori.
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1 Introduction and statement of main results

Let T be the expanding endomorphism of the 2-torus T2 = R2/Z2 given by the diagonal matrix diag(n, m) where
2 ≤ m ≤ n are integers. The simplest invariant sets for T , called the self-affine Sierpinski carpets, have the form

K (T, D) =
{ ∞∑

k=1

diag(n−k, m−k)dk : dk ∈ D for all k ≥ 1

}
,

where D ⊆ I × J is the set of digits with I = {0, 1, . . . , n − 1} and J = {0, 1, . . . , m − 1}. Alternatively, define
a map KT : DN → T2 by

KT ((dk)∞
k=1) =

∞∑
k=1

diag
(
n−k, m−k

)
dk .

Then K (T, D) = KT (DN). The set K (T, D) were first studied by McMullen [13] and Bedford [2] independently.
In the past two decades, some further problems related to the self-affine Sierpinski carpet K (T, D) and its various
variations have been proposed and considered by a large number of authors (see [1], [3]–[7], [9]–[12], [14]–[17]
etc.)

For any x = (xi )∞
i=1 ∈ DN and a nonempty subset � ⊆ D, define

Nk(x, �) = |{1 ≤ j ≤ k : x j ∈ �}|, (1.1)

where and throughout this paper we use |A| to denote the number of members of a finite set A. Whenever there
exists the limit

f (x, �) := lim
k→∞

Nk(x, �)
k

(1.2)
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it is called the group frequency of � in the coding x . When we write the symbol f (x, �) we are already assuming
the existence of the limit in (1.2). When � = {d} is a singleton, the symbols Nk(x, �) and f (x, �) are simplified
as Nk(x, d) and f (x, d), respectively. In particular, f (x, d) is called the digit frequency of d in the coding x .
Clearly, if f (x, d) exists for all d ∈ � then f (x, �) exists and equals to

∑
d∈� f (x, d). But the converse is not

true.
Let σ denote the projection of R2 onto its second coordinate. Let

B = σ (D) and α = logn m.

Let H be the set of probability vectors on D, i.e.,

H =
{

p = (pd)d∈D : 0 ≤ pd ≤ 1 and
∑
d∈D

pd = 1

}
.

For a given probability vector p = (pd)d∈D ∈ H , it induces a probability vector on B

q = (qb)b∈B where qb =
∑

d∈D∩( I×{b})
pd . (1.3)

A probability vector p = (pd)d∈D ∈ H is called uniformly distributed on D if pd = 1/|D|. For b ∈ B, the set
D ∩ (I × {b}) is called a horizontal fiber of D. D is said to have uniform horizontal fibers if |D ∩ (I × {b})| is
invariant for all b ∈ B.

Define a function on H

g(p) = −α
∑
d∈D

pd logm pd − (1 − α)
∑
b∈B

qb logm qb, (1.4)

where we adopt the convention that 0 log 0 = 0. For a nonempty subset A ⊆ H denote

gsup(A) := sup
p∈A

g(p) and gmax(A) := max
p∈A

g(p) if the maximum is attainable.

For a nonempty subset � ⊆ H let

�(�) = {
x = (xi )∞

i=1 ∈ DN : ( f (x, d))d∈D ∈ �
}
, (1.5)

i.e., �(�) consists of those sequences x ∈ DN for which all digit frequencies f (x, d), d ∈ D, exist and
( f (x, d))d∈D ∈ �. When � is a singleton, Nielsen [14] proved

Theorem A. Let g(p) be defined as in (1.4). For p ∈ H
[R1] dimH KT (�({p})) = dimP KT (�({p})) = g(p);
[R2] dimB KT (�({p})) = dimB KT (DN) = logm

(|B|1−α|D|α)
;

[R3] Let γ denote the common value of dimH KT (�({p})) and dimP KT (�({p})).
(a) If p is uniformly distributed on D and if D has uniform horizontal fibers then

0 < Hγ (KT (�({p}))) ≤ Pγ (KT (�({p}))) < ∞;

(b) If p is not uniformly distributed on D or if D does not have uniform horizontal fibers then

Hγ (KT (�({p}))) = Pγ (KT (�({p}))) = ∞.

By (1.5) we have KT (�(�)) = ⋃
p∈� KT (�({p})). Our first goal is to prove the variational formula for the

dimensions of KT (�(�)) (also see Theorem 3.1 in Section 3):

Theorem 1.1 Let � be a nonempty subset of H. Then

dimH KT (�(�)) = dimP KT (�(�)) = sup
p∈�

dimH KT (�({p})) = gsup(�).

We also discuss the Hausdorff and packing measures of KT (�(�)) in their dimensions. By the continuity of
g(p), we know that the value supp∈� g(p) can be attained on � (the closure of �). Let

�sup = {
p∗ ∈ � : g(p∗) = gsup(�)

}
. (1.6)
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Then we have (also see Theorem 3.2 in Section 3):

Theorem 1.2 Denote γ = dimH KT (�(�)) = dimP KT (�(�)). Let �sup be defined as in (1.6).
(I) Suppose that �sup ∩ � �= ∅. We have

(Ia) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ � and if D has uniform horizontal fibers, then 0 < Hγ (KT (�(�))) ≤
Pγ (KT (�(�))) < ∞;

(Ib) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ � but D has not uniform horizontal fibers, then Hγ (KT (�(�))) =
Pγ (KT (�(�))) = ∞;

(Ic) If (1/|D|, . . . , 1/|D|) /∈ �sup ∩ �, then Hγ (KT (�(�))) = Pγ (KT (�(�))) = ∞;
(II) If �sup ∩ � = ∅, then Hγ (KT (�(�))) = Pγ (KT (�(�))) = 0.

Our next goal is to prove the variational formula for the case related to the group frequencies.
Let {�i }s

i=1 be a partition of D, i.e., all �i are nonempty, pairwise disjoint and D = ⋃s
i=1 �i . For a nonempty

subset � of

Hs =
{

c = (ci )s
i=1 : 0 ≤ ci ≤ 1 and

s∑
i=1

ci = 1

}
,

let

�∗ =
⎧⎨⎩p = (pd)d∈D ∈ H :

⎛⎝∑
d∈�i

pd

⎞⎠s

i=1

∈ �

⎫⎬⎭ (1.7)

and

�s(�) = {
x = (xi )∞

i=1 ∈ DN : ( f (x, �i ))s
i=1 ∈ �

}
. (1.8)

For c = (ci )s
i=1 ∈ Hs one can check that the function g(p) can attain its maximum on {c}∗ (defined by (1.7) for

� = {c}) at a unique point p = (pd)d∈D satisfying

pd =
qθ

σ (d)∑
d ′∈� j

qθ
σ (d ′)

c j , for d ∈ � j and j = 1, 2, . . . , s, (1.9)

where θ = α−1
α

. For a vector y = (yi )k
i=1 ∈ Rk , y > 0 means that yi > 0 for all 1 ≤ i ≤ k throughout this paper.

When � is a singleton, Gui and Li [8] proved

Theorem B. Let 0 < c = (ci )s
i=1 ∈ Hs . Let p = (pd)d∈D be determined by (1.9) and let (qb)b∈B be the

probability vector induced by (pd)d∈D via (1.3). Then

dimH KT (�s({c})) = gmax({c}∗) = g(p) = α

s∑
j=1

⎛⎝c j logm

∑
d∈� j

qθ
σ (d) − c j logm c j

⎞⎠ ,

where θ = α−1
α

= 1 − logm n.
When s = |D|, Theorem B reduces to [R1] of Theorem A. However, unlike [R1] the Hausdorff dimension of

KT (�s({c})) (s �= |D|) generally doesn’t coincide with its packing dimension. For example, when s = 1 (then
c = (1)) we have �1({c}) = DN and dimH KT (�1({c})) < dimB KT (�1({c})) = dimP KT (�1({c})) except for
some special cases. In fact, to our knowledge the packing dimension of KT (�s({c})) (s �= |D|) is unknown.

Now let us return to KT (�s(�)). Obviously KT (�s(�)) = ⋃
c∈� KT (�s({c})). We show that the variational

formula holds for dimH KT (�s(�)) (also see Theorem 3.3 in Section 3):

Theorem 1.3 Let � be a nonempty subset of Hs. Let �∗ and �s(�) be defined as in (1.7) and (1.8), respectively.
Then

dimH KT (�s(�)) = sup
c∈�

dimH KT (�s({c})) = gsup(�∗).
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When s = |D|, Theorem 1.3 reduces to Theorem 1.1. Similar to Theorem 1.2, for ∅ �= � ⊆ Hs let

�sup =
{

p ∈ �
∗

: g(p) = gsup(�∗)
}

. (1.10)

By the same argument as in the proof of Theorem 1.2 (Theorem 3.2) we have

Theorem 1.4 Denote γ = dimH KT (�s(�)). Let �sup be defined as in (1.10).

(I) Suppose that �sup ∩ �∗ �= ∅. We have
(Ia) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ �∗ and if D has uniform horizontal fibers, then 0 < Hγ (KT (�s(�))) <

∞;
(Ib) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ �∗ but D has not uniform horizontal fibers, then Hγ (KT (�s(�))) = ∞;
(Ic) If (1/|D|, . . . , 1/|D|) /∈ �sup ∩ �∗, then Hγ (KT (�s(�))) = ∞;
(II) If �sup ∩ �∗ = ∅, then Hγ (KT (�s(�))) = 0.

Below we list two examples as application of our theorems. In the most cases as in Example 1, the Hausdorff
dimensions are implicitly determined. However, in some cases as in Example 2 the Hausdorff dimensions can be
explicitly determined.

Example 1.5 Let A is a nonempty proper subset of D. Let

M =
{

x = (xi )∞
i=1 ∈ DN : 0 <

∑
d∈A

f 2(x, d) ≤ 2/3

}
.

Then by Theorem 1.3 we have

dimH KT (M) = gsup(Q) = sup
( pd )d∈D∈Q

−α
∑
d∈D

pd logm pd − (1 − α)
∑
b∈B

qb logm qb

where Q = {
p = (pd)d∈D ∈ H : 0 <

∑
d∈A p2

d ≤ 2/3
}
.

Example 1.6 (See [6].). For two distinct horizontal fibres Fb1 , Fb2 and β > 0, let

M = {
x = (xi )∞

i=1 ∈ DN : f (x, Fb1) = β f (x, Fb2)
}
.

Let Q =
{

p = (pd)d∈D ∈ H :
∑

d∈Fb1
pd = β

∑
d∈Fb2

pd

}
. Then by Theorem 1.3 we have

(
recall that α =

logn m
)

dimH KT (M) = gsup(Q) = logm

⎛⎝(1 + β)
(
β−β |Fb1 |αβ |Fb2 |α

) 1
1+β +

∑
b∈B\{b1,b2}

|Fb|α
⎞⎠ .

The rest of this paper is arranged as follows. Some known results needed in the present paper and lemmas are
given in the next section. We shall show that Theorem B is also true when c ≥ 0. The proofs of Theorems 1.1–1.2
and 1.3 are given in Section 3.

2 Preliminaries

For x = (xn)∞
n=1 ∈ (I × J )N and k ∈ N, let Qk(x) consist of all points KT (y) where y ∈ (I × J )N are such that

y j = x j for 1 ≤ j ≤ [αk] and σ (y j ) = σ (x j ) for [αk] + 1 ≤ j ≤ k where [t ] denotes the greatest integer not more
than t (∈ R). The sets Qk(x) are approximate squares in [0, 1]2, whose sides have length n−[αk] and m−k . Note
that the radio of the sides of Qk(x) is at most n, and their diameters diamQk(x) satisfy

√
2m−k ≤ diamQk(x) ≤

√
2nm−k .

As in [13], [14] [16], [17] one can use these approximate squares to calculate dimension since one can restrict
attention to covers by such approximate squares.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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The following two lemmas will be used in this paper, which are just reformation of Rogers-Taylor density
theorem.

Lemma 2.1 ([14, Lemma 4]) Suppose that μ is a finite Borel measure on [0, 1]2, and that E is a subset of
(I × J )N such that KT (E) is a Borel subset of [0, 1]2, and μ(KT (E)) > 0. Let δ be a positive number. For each
point x ∈ E, put

A(x) = lim sup
k→∞

(kδ + logm μ(Qk(x))).

1) If A(x) = −∞ for all x ∈ E, then Hδ(KT (E)) = +∞;
2) If A(x) = +∞ for all x ∈ E, then Hδ(KT (E)) = 0;
3) If there are real numbers a and b such that a ≤ A(x) ≤ b for all x ∈ E, then 0 < Hδ(KT (E)) < +∞.

Lemma 2.2 ([14, Lemma 5]) Suppose that μ is a finite Borel measure on [0, 1]2, and that E is a subset of
(I × J )N such that KT (E) is a Borel subset of [0, 1]2, and μ(KT (E)) > 0. Let δ be a positive number. For each
point x ∈ E, put

A(x) = lim inf
k→∞

(kδ + logm μ(Qk(x))).

1) If A(x) = −∞ for all x ∈ E, then Pδ(KT (E)) = +∞;
2) If A(x) = +∞ for all x ∈ E, then Pδ(KT (E)) = 0;
3) If there are real numbers a and b such that a ≤ A(x) ≤ b for all x ∈ E, then 0 < Pδ(KT (E)) < +∞.

The Borel measures on [0, 1]2 to which the above lemmas will be applied are constructed as follows. For a
probability vector p = (pd)d∈D on D, let μp be the infinite product probability measure on DN determined by p.
Let μ̃p be the Borel probability measure induced by the map KT , i.e., μ̃p(A) = μp

(
K −1

T (A)
)

for any Borel set
A ⊆ K (T, D). One may, of course, regard μ̃p as a Borel measure on [0, 1]2.

By means of the Law of Large Numbers, we have

μ̃p(KT (�(�)) = 1 if p ∈ �,

and

μ̃p(KT (�s(�)) = 1 if p ∈ �∗.

In addition, when p = (pd)d∈D > 0 from the definition of μ̃p it follows that for any x = (xi )∞
i=1 ∈ DN (cf. formula

(1.4) in [14], also formula (4.4) in [4])

μ̃p(Qk(x)) =
[αk]∏
j=1

px j ·
k∏

j=[αk]+1

qσ (x j ) . (2.1)

Lemma 2.3 Let � be a closed convex subset of H. Then there exists a unique p∗ = (p∗
d)d∈D ∈ � such that

g(p∗) = gmax(�) and∑
d∈D

pd

(
−α logm p∗

d − (1 − α) logm q∗
σ (d)

)
≤

∑
d∈D

p∗
d

(
−α logm p∗

d − (1 − α) logm q∗
σ (d)

)
(2.2)

for all p = (pd)d∈D ∈ �. In addition, if there exists a p ∈ � such that p > 0, then p∗ > 0.

P r o o f . The existence and uniqueness of p∗ satisfying g(p∗) = gmax(�) are easily obtained by the compact-
ness of � and strict concavity of g(p).

Suppose that p = (pd)d∈D ∈ � such that p > 0. We claim that D1 = {d ∈ D : p∗
d = 0} is empty. Otherwise,

both D1 and D2 = D \ D1 are nonempty. Let pt = tp + (1 − t)p∗ = (tpd + (1 − t)p∗
d)d∈D, t ∈ [0, 1]. Then pt ∈

� with pt > 0 for t ∈ (0, 1] and p0 = p∗. Let f (t) = g(pt), t ∈ [0, 1]. Then one can check that limt→0+ f ′(t) =
+∞ which implies that g(p∗) cannot attain its maximum at p∗.
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Finally we prove (2.2). For any given p ∈ � let

y(t) = g(p∗ + t(p − p∗)), 0 ≤ t ≤ 1.

Then y(t) attains maximum at t = 0. So

0 ≥ y′(0) = 〈g′(p∗), p − p∗〉

=
〈(

−α logm p∗
d − (1 − α) logm q∗

σ (d) − 1

log m

)
d∈D

, (pd − p∗
d)d∈D

〉
yielding (2.2). �

We like to point out that in [14] the proof of [R1] of Theorem A was only given for the case p > 0. For
completeness, we supplement the proof for the case p = (pd)d∈D ∈ H with some pd = 0.

Lemma 2.4 Let p = (pd)d∈D ∈ H with some pd = 0. Then

dimH KT (�({p})) = dimP KT (�({p})) = g(p).

P r o o f . Let D1 = {d ∈ D : pd = 0} and D2 = D \ D1. Let p̃ = (pd)d∈D2 . Let �̃(̃p) be given by (1.5) with
D2 instead of D. Then dimP KT (�({p})) ≥ dimH KT (�({p})) ≥ dimH KT (�̃(̃p)) = g(p).

In the following we show that dimP KT (�({p})) ≤ g(p). Fix an ε > 0. Take p = ( p̄d)d∈D ∈ H such that p > 0
and

gmax([p, p]) ≤ g(p) + ε,

where [p, p] = {(t p̄d + (1 − t)pd)d∈D : 0 ≤ t ≤ 1}. Let p∗ = (p∗
d)d∈D ∈ [p, p] be such that g(p∗) = gmax([p, p]).

Then p∗ > 0 by Lemma 2.3. To finish the proof one only needs to show that dimP KT (�([p, p])) ≤ g(p∗). Note
that for any x = (xi )∞

i=1 ∈ �([p, p])

logm μ̃p∗(Qk(x)) =
[αk]∑
i=1

logm p∗
xi

+
k∑

i=[αk]+1

logm q∗
σ (xi )

=
∑
d∈D

N[αk](x, d) logm p∗
d +

∑
d∈D

Nk(x, d) logm q∗
σ (d) −

∑
d∈D

N[αk](x, d) logm q∗
σ (d) .

Therefore, for each x ∈ �([p, p])

lim
k→∞

1

k
logm μ̃p∗(Qk(x)) = α

∑
d∈D

f (x, d) logm p∗
d + (1 − α)

∑
d∈D

f (x, d) logm q∗
σ (d)

≥
∑
d∈D

p∗
d

(
α logm p∗

d + (1 − α) logm q∗
σ (d)

)
= −g(p∗).

It follows from Lemma 2.2 that

dimP KT (�([p, p])) ≤ g(p∗).

So the proof is completed. �

Note that in Theorem B one requires c > 0. The following lemma shows that it is still true when some ci are
zeros.

Lemma 2.5 Let c = (ci )s
i=1 ∈ Hs with some ci = 0. Let p = (pd)d∈D be determined by (1.9) and let (qb)b∈B

be the probability vector induced by (pd)d∈D via (1.3). Then

dimH KT (�s({c})) = gmax({c}∗) = g(p) = α

s∑
j=1

⎛⎝c j logm

∑
d∈� j

qθ
σ (d) − c j logm c j

⎞⎠ ,

where θ = α−1
α

= 1 − logm n.
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P r o o f . Let D1 = {1 ≤ i ≤ s : ci = 0} and D2 = {1, . . . , s} \ D1. Let c̃ = (ci )i∈D2 . Let �|D2|({̃c}) be given
by (1.8) with

⋃
i∈D2

�i instead of D and the corresponding partition �i , i ∈ D2. Then

dimH KT (�s({c})) ≥ dimH KT (�|D2|{̃c}) = gmax({c}∗).
In the following we show that dimH KT (�s({c})) ≤ gmax({c}∗). Fix an ε > 0. Take c = (c̄i )s

i=1 ∈ Hs such that
c > 0 and

gmax([c, c]∗) ≤ gmax({c}∗) + ε,

where [c, c] = {(t c̄i + (1 − t)ci )s
i=1 : 0 ≤ t ≤ 1}.

Let p = ( p̄d)d∈D ∈ [c, c]∗ be such that g(p) = gmax([c, c]∗). Then p > 0 by Lemma 2.3 and satisfies

p̄d =
q̄θ

σ (d)∑
d ′∈� j

q̄θ
σ (d ′)

a j , for d ∈ � j and j = 1, 2, . . . , s. (2.3)

Note that ai = ∑
d∈�i

p̄d , i = 1, . . . , s. To finish the proof one only needs to show that dimH KT (�s([c, c]∗)) ≤
g(p). By (2.3) we have

logm p̄d = θ logm q̄σ (d) + logm a j − logm

∑
d∈� j

q̄θ
σ (d), for d ∈ � j , j = 1, 2, . . . , s. (2.4)

By the definition of Nk(x, � j ) in (1.1), we have that for any x = (xi )∞
i=1 ∈ DN and any k ∈ N

Nk(x, � j ) =
∑
d∈� j

Nk(x, d), j = 1, 2, . . . , s.

Let

Sj (k) =
∑
d∈� j

Nk(x, d) logm q̄σ (d), j = 1, 2, . . . , s. (2.5)

For x = (xi )∞
i=1 ∈ �s([c, c]∗), we have

logm μ̃p(Qk(x)) =
[αk]∑
i=1

logm p̄xi +
k∑

i=[αk]+1

logm q̄σ (xi )

=
s∑

j=1

∑
d∈� j

N[αk](x, d) logm p̄d +
s∑

j=1

∑
d∈� j

Nk(x, d) logm q̄σ (d)

−
s∑

j=1

∑
d∈� j

N[αk](x, d) logm q̄σ (d)

=
s∑

j=1

∑
d∈� j

N[αk](x, d) logm a j −
s∑

j=1

logm

∑
d∈� j

q̄θ
σ (d)

∑
d∈� j

N[αk](x, d)

+
s∑

j=1

∑
d∈� j

Nk(x, d) logm q̄σ (d) −
s∑

j=1

∑
d∈� j

N[αk](x, d)
α

logm q̄σ (d)

=
s∑

j=1

N[αk](x, � j ) logm a j −
s∑

j=1

N[αk](x, � j ) logm

∑
d∈� j

q̄θ
σ (d)

+
s∑

j=1

Sj (k) −
s∑

j=1

1

α
Sj ([αk]),
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by (2.1), (2.4) and (2.5). Note that for each x ∈ �s([c, c]∗), we have

lim sup
k→∞

1

k
logm μ̃p(Qk(x)) =

s∑
j=1

α f (x, � j ) logm a j −
s∑

j=1

α f (x, � j ) logm

∑
d∈� j

q̄θ
σ (d)

+ lim sup
k→∞

s∑
j=1

(
Sj (k)

k
− Sj ([αk])

αk

)
. (2.6)

Claim. For any (zi )s
i=1 ∈ [c, c]

s∑
j=1

αz j logm a j −
s∑

j=1

αz j logm

∑
d∈� j

q̄θ
σ (d) ≥

s∑
j=1

αa j logm a j −
s∑

j=1

αa j logm

∑
d∈� j

q̄θ
σ (d) .

�
Proof of the claim. Take � = [c, c]∗ and take p = (pd)d∈D ∈ � such that

∑
d∈� j

pd = z j . Then by
Lemma 2.3 we have∑

d∈D

pd
(
α logm p̄d + (1 − α) logm q̄σ (d)

)
≥

∑
d∈D

p̄d
(
α logm p̄d + (1 − α) logm q̄σ (d)

) = −g(p).

By putting p̄d = q̄θ
σ ( d)∑

d′∈� j
q̄θ

σ ( d′)
a j (see (2.3)) we have

∑
d∈D

pd
(
α logm p̄d + (1 − α) logm q̄σ (d)

) =
s∑

j=1

αz j logm a j −
s∑

j=1

αz j logm

∑
d∈� j

q̄θ
σ (d)

and ∑
d∈D

p̄d
(
α logm p̄d + (1 − α) logm q̄σ (d)

) =
s∑

j=1

αa j logm a j −
s∑

j=1

αa j logm

∑
d∈� j

q̄θ
σ (d) .

So the claim is proved.
For a fixed x ∈ �s([c, c]∗), lim supk→∞

∑s
j=1

Sj (k)
k is finite. Thus

lim sup
k→∞

s∑
j=1

(
Sj (k)

k
− Sj ([αk])

αk

)
≥ lim sup

k→∞

s∑
j=1

Sj (k)
k

− lim sup
k→∞

s∑
j=1

Sj ([αk])
αk

= 0.

Thus, by (2.6) and the above claim we have

lim sup
k→∞

1

k
logm μ̃p(Qk(x)) ≥ −g(p)

It follows from Lemma 2.1 that dimH KT (�s([c, c]∗)) ≤ g(p). �
Finally, we consider a special partition {�i }s

i=1 of D. We take {�i }s
i=1 as the horizontal fibers of D, i.e., each �i

is a horizontal fiber of D. In this case, by (2.5) we have Sj (k) = Nk(x, � j ) logm q̄σ (d), j = 1, 2, . . . , s(d ∈ � j ).
Therefore, limk→∞ 1

k logm μ̃p(Qk(x)) = −g(p). Thus one actually obtains

Corollary 2.6 Let {�i }s
i=1 be the horizontal fibers of D. For c = (ci )s

i=1 ∈ Hs

dimH KT (�s({c})) = dimP KT (�s({c})) =
s∑

j=1

(c j logm |� j |α − c j logm c j ) ,

where α = logn m.
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3 Proofs

This section is mainly devoted to determining the Hausdorff dimensions of KT (�(�)) and KT (�s(�)).

Theorem 3.1 Let � be a nonempty subset of H. Then

dimH KT (�(�)) = dimP KT (�(�)) = sup
p∈�

dimH KT (�({p})) = gsup(�).

P r o o f . We first show that the result is true if � is closed and convex and there exists a p ∈ � with p > 0.
Let p∗ = (p∗

d)d∈D ∈ � be such that g(p∗) = maxp∈� g(p). Then p∗ > 0 by Lemma 2.3. One only needs to
show that dimP KT (�(�)) ≤ g(p∗). Note that for x = (xi )∞

i=1 ∈ �(�)

logm μ̃p∗(Qk(x)) =
[αk]∑
i=1

logm p∗
xi

+
k∑

i=[αk]+1

logm q∗
σ (xi )

=
∑
d∈D

N[αk](x, d) logm p∗
d +

∑
d∈D

Nk(x, d) logm q∗
σ (d)

−
∑
d∈D

N[αk](x, d) logm q∗
σ (d) .

Therefore, for each x ∈ �(�)

lim
k→∞

1

k
logm μ̃p∗(Qk(x)) = α

∑
d∈D

f (x, d) logm p∗
d + (1 − α)

∑
d∈D

f (x, d) logm q∗
σ (d)

≥
∑
d∈D

p∗
d

(
α logm p∗

d + (1 − α) logm q∗
σ (d)

)
= −gmax(�).

It follows from Lemma 2.2 that

dimP KT (�(�)) ≤ gmax(�).

For the general case, let � be the closure of �. We will prove that dimP KT (�(�)) ≤ gmax(�) since gsup(�) =
gmax(�). Note that g(p) is uniformly continuous on H . For any ε > 0 there exists a δ > 0 such that |g(p1) −
g(p2)| < ε for any p1, p2 ∈ H with |p1 − p2| ≤ 2δ.

Let Bδ(p) be the closed ball of radius δ and centered at p. Take a finite members, denoted by �i , 1 ≤ i ≤ �,
from {Bδ(p) ∩ H : p ∈ �} such that

⋃�
i=1 �i ⊇ �. Then

(I) each �i ⊆ H is compact and convex and there exists a p ∈ �i with p > 0;
(II) gmax(�i ) ≤ gmax(�i ∩ �) + ε ≤ gmax(�) + ε = gsup(�) + ε.
Let pi ∈ �i be such that g(pi ) = gmax(�i ). Then the previous argument shows that

dimP KT (�(�i )) ≤ gmax(�i ) ≤ gsup(�) + ε, 1 ≤ i ≤ �,

leading to dimP KT (�(�)) ≤ max1≤i≤� dimP KT (�(�i )) ≤ gsup(�) + ε. �

Theorem 3.2 Denote γ = dimH KT (�(�)) = dimP KT (�(�)). Let �sup be defined as in (1.6).
(I) Suppose that �sup ∩ � �= ∅. We have

(Ia) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ � and if D has uniform horizontal fibers, then 0 < Hγ (KT (�(�))) ≤
Pγ (KT (�(�))) < ∞;

(Ib) If (1/|D|, . . . , 1/|D|) ∈ �sup ∩ � but D has not uniform horizontal fibers, then Hγ (KT (�(�))) =
Pγ (KT (�(�))) = ∞;

(Ic) If (1/|D|, . . . , 1/|D|) /∈ �sup ∩ �, then Hγ (KT (�(�))) = Pγ (KT (�(�))) = ∞;
(II) If �sup ∩ � = ∅, then Hγ (KT (�(�))) = Pγ (KT (�(�))) = 0.

www.mn-journal.com C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



602 Y. X. Gui, W. X. Li and D. M. Xiao: Variational formula related to the self-affine Sierpinski carpets

P r o o f . (I) When (1/|D|, . . . , 1/|D|) ∈ �sup ∩ � and D has uniform horizontal fibers, one can check that

γ = g ((1/|D|, . . . , 1/|D|)) = α logm |D| + (1 − α) logm |B|.
Set p = (1/|D|, . . . , 1/|D|). Then for every x ∈ �(�) and k ∈ N

kγ + logm μ̃p(Qk(x)) = k(α logm |D| + (1 − α) logm |B|)

+ [αk] logm
1

|D| + (k − [αk]) logm
1

|B|

= (αk − [αk]) logm
|D|
|B| ,

leading to

0 ≤ lim inf
k→∞

{kγ + logm μ̃p(Qk(x))} ≤ lim sup
k→∞

{kγ + logm μ̃p(Qk(x))} ≤ logm
|D|
|B| .

Thus (Ia) follows from Lemmas 2.1 and 2.2.
For the cases (Ib) and (Ic), take p ∈ �sup ∩ �. Then

Pγ (KT (�(�))) ≥ Hγ (KT (�(�))) ≥ Hγ (KT (�({p}))) = ∞
by (b) of [R3].

(II) For k ∈ N let Bk(p) be the closed ball of radius 1/k and centered at p. Let �k = � \ ⋃
p∈�sup

Bk(p). Note
that �sup is compact. Then

� =
∞⋃

k=1

�k and gsup(�k) < γ.

Thus, we have

Hγ (KT (�(�))) = lim
k→∞

Hγ (KT (�(�k))) = 0,

and

Pγ (KT (�(�))) = lim
k→∞

Pγ (KT (�(�k))) = 0.

This completes the proof. �

The following theorem gives the variational formula for dimH KT (�s(�)).

Theorem 3.3 Let � be a nonempty subset of Hs. Let �∗ and �s(�) be defined as in (1.7) and (1.8), respectively.
Then

dimH KT (�s(�)) = gsup(�∗).

P r o o f . The inequality dimH KT (�s(�)) ≥ gsup(�∗) is clear since for any p ∈ �∗ we have

dimH KT (�s(�)) ≥ dimH KT (�({p})) = g(p)

by [R1] of Theorem A.
We first show that the result is true if � is closed and convex and there exists a c ∈ � with c > 0. In this case,

�∗ is also closed and convex.
Let p∗ = (p∗

d)d∈D ∈ �∗ be such that g(p∗) = gmax(�∗). Then p∗ > 0 by Lemma 2.3. By the same argument
as in the proof of Lemma 2.5 we have that for each x = (xk)∞

k=1 ∈ �s(�)

lim sup
k→∞

1

k
logm μ̃p∗(Qk(x)) ≥ −g(p∗),

which implies that dimH KT (�s(�)) ≤ g(p∗) by Lemma 2.1.
For the general case we will prove that dimH KT (�s(�)) ≤ gmax(�

∗
) since gsup(�∗) = gmax(�

∗
).
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Note that the function gmax({c}∗) in c is uniformly continuous on Hs . For any ε > 0 there exists a δ > 0 such
that |gmax({c1}∗) − gmax({c2}∗)| < ε for any c1, c2 ∈ Hs with |c1 − c2| ≤ 2δ.

Let Bδ(c) be the closed ball of radius δ and centered at c ∈ Hs . Take a finite members, denoted by �i , 1 ≤ i ≤ �,
from {Bδ(c) ∩ Hs : c ∈ �} such that

⋃�
i=1 �i ⊇ �. Then

(I) each �i ⊆ Hs is compact and convex and there exists a c ∈ �i with c > 0;
(II) gmax(�∗

i ) ≤ gmax((�i ∩ �)∗) + ε ≤ gmax(�
∗
) + ε = gsup(�∗) + ε.

Then the previous argument shows that

dimH KT (�s(�i )) ≤ gmax(�∗
i ) ≤ gsup(�∗) + ε, 1 ≤ i ≤ �,

leading to dimH KT (�s(�)) ≤ max1≤i≤� dimH KT (�s(�i )) ≤ gsup(�∗) + ε. �
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